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Abstract. We consider theS = % Ising-like, fully anisotropic Heisenberg antiferromagnetic
Hamiltonian in one dimension and study the dynamics of domain-wall excitations using
perturbation theory. It is shown that the domain walls can form bound states. The transverse
correlation functionS** (g, w) is calculated in first-order perturbation theory and the zone-centre
lineshape is found to be asymmetric towards lower energy. A comparison of the results with
earlier theories as well as experimental results on Csgafdl CsCoBs is made.

1. Introduction

The S = % Ising-like antiferromagnetic (AFM) chain has been extensively studied over the
years [1-9]. The spin dynamics of the system are characterized by propagating domain
walls or solitons. The exchange interaction Hamiltonian describing the system is given by

H=2]) [SiS5,+e(SI S,y + S!S )] O<e<l 1)

Two experimental realizations of the model system are Cs{afill CsCoBy. For very

small ¢, the lowest-order ground state of (1) is thé&e\ state (figure 1) with a total
component of the spin given h§;. = 0. A domain-wall pair (DWP) state is created by
flipping v adjacent spins in the ¢l state (figure 1). The first excited states wiith= 0, +1
consist of superpositions of the DWP states. Ishimura and Shiba (IS) [2] showed, using
first-order perturbation theory in, that the propagating DWPs give rise to an excitation
continuum around the Ising excitation energy. ZT'he existence of this continuum has been
verified in inelastic neutron scattering experiments. At low temperatures, the spin-wave
response measured near~ 2J arises from transitions from the ground state to the first
excited states. The response is determined by the transverse correlation f§rittpny).

At temperatures, when the DWP states are thermally populated, transitions within the band
of excited states occur, giving rise to the so-called ‘soliton response’ in neutron scattering
experiments. The longitudinal correlation functi§fi(q, ») exhibits a central peak as first
predicted by Villain [1]. In this paper, we shall be concerned with the spin-wave response
only in which transitions to the excited states occur from the ground state and so can be
described by & = 0 theory.

The compounds CsCofland CsCoBy have been studied through a variety of
experimental techniques such as neutron scattering [4,5,10-13], ESR [14, 15], NMR [16]
and Raman scattering [3,17]. A large body of experimental data thus exists with which
theoretical results can be compared. Both the compounds have a hexagonal structure
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consisting of chains of magnetic €oions. The exchange interactions within a chain

are much stronger than those between chains, making a linear-chain description possible.
The compounds show successive phase transitions at temperdjureend Ty,. For
temperatures” > Ty, this system is in a paramagnetic phase. The intermediate phase
betweenTy; and Ty, is a partially ordered phase with two thirds of the magnetic chains
ordering antiferromagnetically. F&fF < Ty2, a ferrimagnetic phase is obtained in which

all the magnetic chains order in a collinear ferrimagnetic arrangement. Various experiments
show evidence of the propagation of DWPs in the intermediate and paramagnetic phases.
ESR signals in the 3D ordered phase indicate [18] the presence of domain walls although
their detailed dynamics are not obtained from the ESR experiment. There is thus no
doubt that the spin dynamics of the compounds described as Ising-like antiferromagnets
are governed by domain walls, especially in the intermediate and paramagnetic phases. We
shall confine our discussion to the paramagnetic phase in which a linear-chain description is
quite good. A significant feature of the spin-wave respons&tfq, ) in the paramagnetic
phase and near the zone centre is that the spectral weights are heavily concentrated towards
the lower-energy side. This asymmetry in lineshape at Towannot be explained by the
first-order perturbation theory of IS. Naglet al [4] added a staggered field term

Hs=h Z(—l)’Sf 2

to the Hamiltonian in (1). The staggered figidhas two contributiongg and i;.. The

first contribution originates from taking account of the exchange mixing of higher levels
within the ground doublet. The second contribution arises out of the effect of interchain
exchange interactions which are important even above but clog&ito The interchain
interactions treated in the mean-field approximation give rise to the staggered fielld;term
The effectiveS = % Hamiltonian containing bottH (equation (1)) andds (equation (2))

is still defined in one dimension. Using this Hamiltonian, Naghral could explain

the asymmetry in the lineshape 8§f*(q, w) near the zone centre. Their theory, however,
predicted several split peaks 8 (g, ) the existence of which has not been experimentally
verified. Matsubara and Inawashiro (MI) [8, 9] have included a weak next-nearest-neighbour
(NNN) ferromagnetic (FM) interactioit/ in the HamiltonianH in (1):

Hp = =2]") [Si S5, +e(S! S p+ S!S )] )< J <1 ®3)

wo bbb b
wo f ot et
st 4oty HO
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st MO P et el sies and DWP states 8 = +1. The

broken lines indicate the position of domain walls.
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They have shown the existence of bound states of DWPs besides the free DWP states.
They have further shown that @t = 0, whenJ’ is FM (J’ > 0), the transverse correlation
function $**(q, w) exhibits a sharp peak at lower energy while the peak occurs at a higher
energy forJ’ < 0. The results foJ” > 0 are in good agreement with experimental data.

In this paper, we consider the fully anisotropic Ising-like ARM= % Hamiltonian in
one dimension and show that using this Hamiltonian some of the results obtained by MI such
as the asymmetry of the lineshape $f (¢, w) and bound states of DWPs can be derived.
In section 2, the theory and the results for the eigenvalues of the DWP continuum and
DWP bound states are derived. In section 3, the transverse correlation fusittign »)
is calculated and also the dominant spin-wave dispersion obtained from the peak positions
of the correlation functions. Section 4 contains a discussion of the results obtained.

2. Domain-wall pair states
The fully anisotropic Ising-like Heisenberg Hamiltonian in one dimension is given by

N
Hyy, = ZZ(JXS;(S?H + J}‘Sivsfvu + J.Si Sit0)
i=1

N
P P
=2J E I:SiZSiZ+l + El(Si_ Sha+STSh)+ 52(5?5;1 +S; Si_+l)] (4)
im1

J =1 e1= (Jy + J,)/2J g2 =(J, — J,)/2] €1, 62 K 1.
Hamiltonian (1) is a special case of (4) whép= J,. Since the anisotropy constarts
ande, are much less than 1, the Ising p#ft, of H,,, can be treated as the unperturbed
Hamiltonian and the rest of the HamiltoniaH,,, treated as perturbation, i.e.

nyz =H.+ ny- (5)
For this Hamiltonian a periodic boundary condition is assumedM.e- 1 = 1, whereN
is the total number of spins. The ground statefbf is doubly degenerate and so are the
Néel stategN;) and|N,) shown in figure 1. From these two states, one can construct two
translationally symmetric ground states

¢t = i(|Nl> + [N2)) ¢ = i(|N1) — |N2) (6)
V2 V2

with momentum wavevectors = 0 andn respectively. Lowest-lying excited states can be
obtained from the Bel state by flipping a block of adjacent spins (figure 1), giving rise

to DWP states. The broken lines indicate the positions of the domain walls. We choose a
set of basis states for odddescribing propagating DWPs with wavevecior

1 - v=1)/2 ~ _(vfl)/Z ~
v, q)+x = N Z:‘3XI3('CIVJ)(S,~+ 11_! Siia-15ha +S; 11_! Sﬁzz-lsj+21)¢i~ Q)
J = =
A set of basis states can similarly be defined for everwhich gives rise to the same
excitation spectrum as in the case of addwithin the space of basis states defined by (7),
the ground-state energy in second-order perturbation theory is

NJ
E, = —7(l+af). (8)
The ground-state degeneracy is not lifted in this order. The matrix elemeiffs,ofn the
set of basis states are given by
27 (1+ &%) + 2Jepc08q = Ag forv=1N-1

9
2J(1+35H =4 otherwise. ©)

+{v, Q|nyz|va q)+ = {
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The diagonal elements have been calculated with respect to the ground-state Enargy
(8). The off-diagonal elements are given by

V=v-2

1%
g Hoo |V, = for
+{(v. qlHyy: [V, q) ¢ {V* [v’:v—i—Z (10)

V = 2Je1[1 + exp2iga)].
a is the lattice constant which is taken hereafter as 1. Identical results are obtained for the
stategv, q)_. The off-diagonal terms have been calculated up to first order in the anisotropy
constants following Ml [8, 9] so that a comparison with their results is possible. The first
excited eigenstates can be constructed as an appropriate linear combination of the DWP
states:
N/2
(W (@) =) basexpli2v — Dal|2v — 1).. (11)
v=1
With the choice exfRia) = (V/V*)¥2, the following equations for the coefficients are
obtained:

Ab1 = Agbq +_‘7b3 forv=1
Wby = Aby + Vby_a2+byra)  forv#£1 N—1 (12)
Aby_1 = Aoby_1+ ‘_/bN_g forv=N-1

wherea is the eigenvalue anif = 2¢,J| cosg|. MI [8, 9] have derived an identical set of
equations withAg and A given by

Ao =2J(1+ €% +2J'(1 — £ cog2q))

A=2J(1+3% +4) (13)
where J’' is the NNN FM interaction (equation (3)). Following the MI derivation, the
solutions are of two categories

(i) Free DWP statesThese states give rise to the continuum of excited states with a
lower and upper boundary and eigenvalue

A=A+ 2V cog2p) (14)
with
b, = \/]'N{exp[ip(v + D] — explip,) expl=ip(v + D]} (15)

Herep = (ru+¢)/(N+1, n=123,...,N/2 andy, is approximately given by
@, = 2tan?t [ . AS_in(an/(N +2) }
V + Aco2r /(N + 2))
whereA = A — Ag = —2J5C0Sq.

When V > |A], all the solutions belong to this category. Wheén< |A|, N/2 — 2
solutions are of this category and the remaining two solutions belong to the other category.
The continuum eigenvalug given in (14) is the same as obtained by IS [2], since the
energy does not have a first-order contributiorein However, theb,-values are different
since exfiip,) deviates significantly from 1. It is the change|i,| which is responsible
for the asymmetry ins**(q, w).

(i) DWP bound statedn this case|b, | decreases asincreases from 1 t&//2. Again,
following M, the eigenvalue

‘_/2
A= Ap I a7)

(16)
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and

A2 _ 2 1/2 v (v=1)/2
=[PP as

Another solution with the same eigenvalue is obtained by replaginoy by_,.

We now take into account the fact that there are two ground sgateand ¢~ with
momenta 0 and, respectively. Both the ground states lead to the same solutions. However,
the momentum wavevectgr of the DWPs should be measured with respect to that of the
ground state. Fop™, equations (14) and (17) for remain unchanged. When the ground
state is¢~, ¢ is to be redefined ag — =. Equations (14) and (17) are still valid batis
replaced byy — 7 in Ag and A.

Figure 2 shows a plot of the spin-wave excitation continuum (broken curves) and the
bound-state energy (solid curves) for = 0.05 ande; = 0.1. In the DWP bound states,
the walls do not separate beyond a distance

1 2

p  In[jA]/V]
One finds the existence of two bound-state branehasdb the energies of which lie both
below and above the continuum. For thebranch, the energy lies below the continuum
for ¢ < /2 and above the continuum fgr> /2. The reverse is true for thie branch.

In the case of the MI Hamiltonian, there is just one bound-state branch lying below the
continuumJ’ > 0 and above fov’ < 0.

(19)

\J

0 ni2 n

Figure 2. Spin-wave excitation continuum and DWP bound-state energy in unit§ fufr
g1 = 0.05 andg, = 0.1.
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3. Transverse correlation function S**(q, w) at T =0 K

The transverse correlation functioh*(q, ) at T = 0 K can be written as

1 d
S 0) = 5 WIS @IGH P8 (@ — Eq + Ey) (20)
A i

where the ground stat5;) is d-fold degenerate with eigenvalug, and thew, are the
excited eigenstates with eigenvaluBs. In this case the ground state is doubly degenerate
even in second-order perturbation theory ahe: 2. Equation (20) can further be written
as

S (g @) = 1Y (WIS @IGT) P + (1] S™ (@GP — By + Ey)
A

=3[ (q, ®) + 5 (q, )] (21)
where|G*) and|G™) are the two ground states. Also
. 1 . _
$*(q) = m Xk:exp('qrj)(sf +57)- (22)

Consider the unperturbed ground state. The ground statéG™) to first order ing; and
g2 is given by

+ . (K|Hyylp™)K)
| ) T Eo— E; (23)

where Ey is the unperturbed ground-state energy equat #aVv /2. E; is the energy of the
unperturbed eigenstat&’) and the prime indicatelsk) # ¢™:

GT) =" + Jer Y (TS + S,—S;1)|¢+>/ —2J.

There is no first-order contribution sy as S;"S;",;, + S S;, , acting ong™ gives zero:

i+1
X + 1 14
SH@)IGT) = 5| (1 —e1c08q9)|1g)+ — §|361)+ . (24)
lv, ¢)4 is given by (7). Using (21) and (24) and the expressiondfgrfrom (11), we get
1 V2 1 —e;cosq]V
87, w) = I Im {(1 — £1€059)°G11 + %Gss - %GB
[1 — e1cos8q]V*
Im denotes the imaginary part,
1
R . +
v <’ o= Hyg)+i8| > o= 20)

is the Green function defined with (9) and (10§r; ;, can be evaluated by techniques
similar to those used for the evaluation of Green functions in the NN tight-binding model
with free ends [2]. We list the Green functions as follows:

G 20 -2 i/AV|Z— Q2
TV — Qo + QF
Go Go GoR2

G = — G = — =
B= 3= By

(27)
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where
QoQ — 2|V |2 — iQo/4V 2 — Q2
B 20V 2 — 209 + 93]
Qo:a)—Ao QL=w-—A.
S$**(q, w) has an expression similar to (25) but wighreplaced byg — =. Using the
expressions for the Green functions in (27), one finally obtains

Go

1 4V|2 - Q2 Q Q2
VAVE -2 (14 &1 cosg)? — S 1 o«
Br(V 2 — Qe + 2D) |: 1€0Sg) 7 (1+e1cosq) + 4J2:|}
(28)
where
Qy=Qo(qg - g —m) Q' =Q(@G—>qg-—m). (29)

The wavevectol is measured with respect to that of the ground state. In deriving the
expression foils** (g, w), only the contribution for the continuum of excited states has been
calculated. The bound states also contribute to the correlation function and appear as sharp

peaks at the bound-state energies. In figures 3 ar$d*4q, ) is plotted forg = = (zone
centre) andy = 4z /5 with ¢1 = 0.095 ands, = 0.065. For these parameter valués,is

not less tharjA| and so there are no DWP bound states. The plots are clearly asymmetric

towards the lower energies. In figure 5, the dispersion of the peak positiofis' @f, w)

for various values of are shown and compared with the experimental results (open circles)

of Satijaet al [10].

0.80

0.601

1.40 1.80 2.20 2.60

Figure 3. $**(q, w) at T = 0 for &g = 0.095, &2 = 0.065 andg = 7.
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0.80r

0.60+
3
= 0,40}
X
W

0.204

0 1 i 1 1 i 5
1.40 1.80 2.20 2.60

Figure 4. §%*(q, w) at T = O for &; = 0.095, &, = 0.065 andg = 4x /5.

4. Discussion of results

We have shown using the fully anisotropic Ising-like Heisenberg Hamiltonian that some
of the results of the MI theory, in which a NNN FM interaction is assumed besides the
usual NN AFM interaction, can be qualitatively reproduced. These include the formation
of the DWP bound states and an asymmetry in the lineshape of the transverse correlation
function $**(q, w) at the zone centre. There are, however, a number of differences. The Mi
theory gives rise to a single bound-state branch whereas in the present case two branches are
obtained. No experimental results are as yet available on the effect of bound states on the
thermodynamic and dynamic properties of the experimental systems Gs@a>CsCoBy.

So one cannot comment on which bound-state description is closer to experimental results.
The bound-state formation is more restricted and has less dispersion in the cHsg of

than in the case of the Ml Hamiltonian. The transverse correlation funétibfy, ») in the

present case has a two-peak structure. Near the zone centre, the intensity of the peak towards
the low-energy side is greater and an asymmetry in the lineshape is clearly evident. The Ml
lineshape has a single peak with asymmetry towards the lower energy. The double-peaked
structure in the correlation functions of AFM chains has been reported earlier [19]. The
experimental data presented in [11, 20] indicate the existence of weak resonances at higher
frequencies. There is, however, no definite experimental results on the existence of a second
peak of magnetic origin in the transverse correlation function of Cs£a@dl CsCoBy.

The dispersion relation of the peak frequenciesSof(q, ») (figure 5) of H,,, does not

show very good agreement with the experimental data. This may be due to the limitations
of a first-order perturbation theory in the calculation$sf (q, w). Bose and Chatterjee [6]

using second-order perturbation theory in the calculatioftfq, ) showed that a marked
improvement in the fitting of the peak frequencies to experimental data occurs. Inclusion
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1.04

0.96

w/J

0.88

0.80

Figure 5. Dispersion of peak frequencies 6f*(q, w): O, experimental data of Satijet al
[10].

of further terms in the Hamiltonian such as the staggered field term of Neigé{4] may
also improve the fitting to experimental results. The present perturbative scheme is not of
general applicability because of the use of a restricted set of basis states as in (7). Adoption
of cluster algorithms [21] may lead to a more general approach.

The restriction to the subspace of states of type (7) has the effect that the continuum
energy eigenvalug given by (14) is independent ef to the first order ire,. The expression
for A is thus identical with that obtained in the case= 0 when the energy is calculated
to first order ine;. For this case, the exact Beth@satzresult [22] is known which, for
¢1 — 0 and to first order irgq, is identical with (14) [23, 24]. Exact results corresponding
to the DWP bound-state energy given in (17) are not known.

Apart from relevance to experimental systems such as Cs@o@dICsCoBy, the present
study is intended to provide insights about the spin dynamics of fully anisotropic Ising-like
AFM systems. The ground-state energy and low-lying excitation spectrum of the fully
anisotropic Heisenberg Hamiltonian are known exactly because of the mapping between
the fully anisotropic Hamiltonian and the exactly solvable eight-vertex model [22, 25]. The
dynamical correlation functions are, however, not known exactly because of a lack of
knowledge of the exact wavefunctions. In [19] the correlation functions for the various
special cases of the general anisotropic Hamiltonian are discussed. The Ising-like limit in
which we are interested is, however, only briefly discussed. Our calculations provide us
with some physical insights about spin dynamics in Ising-like fully anisotropic AFM systems
which are not obvious from the mapping onto the eight-vertex model. An important feature
is the double degeneracy of the ground state with two different momentum wavevectors.
This is responsible for the two branches of bound states and also two peaks in the transverse
correlation functions.

The non-triviality of the double degeneracy of the ground state can be rigorously
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demonstrated in the special caseHf,; in (4) with ¢; = 0. Boseet al [26] have shown

that the Neel stategN;) and|N,) are the exact ground states in this case. The Hamiltonian

is unitarily related to the FM Heisenberg Hamiltonian and so has the same spectrum. When
the ground state ig*, the exact excitation spectrum is given by

et =1F¢,c08¢ (30)

where g is measured with respect to the ground-state wavevector. Thus there are two
branches in the excitation spectrum. The lowest excitation spectrum is given by

T
0<g < —
1—e5cC0 SS9 s
= 299 por{ 2 (31)
l+82COSq qugn

The exact excited states with eigenvaleésare simply propagating DWP states with unit
length ¢ = 1 in (7)). In this case there is no continuum of excited states. The continuum
is obtained only wher; # 0. On the other hand, whe < ¢; or ¢, = 0 andJ’ in the

MI Hamiltonian is zero, bound states of DWPs do not occur. The evidence of DWP bound
states from experimentally measurable quantities is, however, yet to be obtained for a real
system.
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