
Domain-wall excitations in the one-dimensional spin-  fully anisotropic Ising-like

antiferromagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 351

(http://iopscience.iop.org/0953-8984/8/3/013)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 351–360. Printed in the UK

Domain-wall excitations in the one-dimensional spin-12 fully
anisotropic Ising-like antiferromagnet

Indrani Bose and Asimkumar Ghosh
Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta-700 009,
India
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Abstract. We consider theS = 1
2 Ising-like, fully anisotropic Heisenberg antiferromagnetic

Hamiltonian in one dimension and study the dynamics of domain-wall excitations using
perturbation theory. It is shown that the domain walls can form bound states. The transverse
correlation functionSxx(q, ω) is calculated in first-order perturbation theory and the zone-centre
lineshape is found to be asymmetric towards lower energy. A comparison of the results with
earlier theories as well as experimental results on CsCoCl3 and CsCoBr3 is made.

1. Introduction

The S = 1
2 Ising-like antiferromagnetic (AFM) chain has been extensively studied over the

years [1–9]. The spin dynamics of the system are characterized by propagating domain
walls or solitons. The exchange interaction Hamiltonian describing the system is given by

H = 2J
∑

i

[Sz
i S

z
i+1 + ε(Sx

i Sx
i+1 + S

y

i S
y

i+1)] 0 < ε < 1. (1)

Two experimental realizations of the model system are CsCoCl3 and CsCoBr3. For very
small ε, the lowest-order ground state of (1) is the Néel state (figure 1) with a totalz
component of the spin given bySz

T = 0. A domain-wall pair (DWP) state is created by
flipping ν adjacent spins in the Ńeel state (figure 1). The first excited states withSz

T = 0, ±1
consist of superpositions of the DWP states. Ishimura and Shiba (IS) [2] showed, using
first-order perturbation theory inε, that the propagating DWPs give rise to an excitation
continuum around the Ising excitation energy 2J . The existence of this continuum has been
verified in inelastic neutron scattering experiments. At low temperatures, the spin-wave
response measured nearω ∼ 2J arises from transitions from the ground state to the first
excited states. The response is determined by the transverse correlation functionSxx(q, ω).
At temperatures, when the DWP states are thermally populated, transitions within the band
of excited states occur, giving rise to the so-called ‘soliton response’ in neutron scattering
experiments. The longitudinal correlation functionSzz(q, ω) exhibits a central peak as first
predicted by Villain [1]. In this paper, we shall be concerned with the spin-wave response
only in which transitions to the excited states occur from the ground state and so can be
described by aT = 0 theory.

The compounds CsCoCl3 and CsCoBr3 have been studied through a variety of
experimental techniques such as neutron scattering [4, 5, 10–13], ESR [14, 15], NMR [16]
and Raman scattering [3, 17]. A large body of experimental data thus exists with which
theoretical results can be compared. Both the compounds have a hexagonal structure
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consisting of chains of magnetic Co2+ ions. The exchange interactions within a chain
are much stronger than those between chains, making a linear-chain description possible.
The compounds show successive phase transitions at temperaturesTN1 and TN2. For
temperaturesT > TN1, this system is in a paramagnetic phase. The intermediate phase
betweenTN1 and TN2 is a partially ordered phase with two thirds of the magnetic chains
ordering antiferromagnetically. ForT < TN2, a ferrimagnetic phase is obtained in which
all the magnetic chains order in a collinear ferrimagnetic arrangement. Various experiments
show evidence of the propagation of DWPs in the intermediate and paramagnetic phases.
ESR signals in the 3D ordered phase indicate [18] the presence of domain walls although
their detailed dynamics are not obtained from the ESR experiment. There is thus no
doubt that the spin dynamics of the compounds described as Ising-like antiferromagnets
are governed by domain walls, especially in the intermediate and paramagnetic phases. We
shall confine our discussion to the paramagnetic phase in which a linear-chain description is
quite good. A significant feature of the spin-wave response ofSxx(q, ω) in the paramagnetic
phase and near the zone centre is that the spectral weights are heavily concentrated towards
the lower-energy side. This asymmetry in lineshape at lowT cannot be explained by the
first-order perturbation theory of IS. Nagleret al [4] added a staggered field term

HS = h
∑

i

(−1)iSz
i (2)

to the Hamiltonian in (1). The staggered fieldh has two contributionsh0 and hic. The
first contribution originates from taking account of the exchange mixing of higher levels
within the ground doublet. The second contribution arises out of the effect of interchain
exchange interactions which are important even above but close toTN1. The interchain
interactions treated in the mean-field approximation give rise to the staggered field termhic.
The effectiveS = 1

2 Hamiltonian containing bothH (equation (1)) andHS (equation (2))
is still defined in one dimension. Using this Hamiltonian, Nagleret al could explain
the asymmetry in the lineshape ofSxx(q, ω) near the zone centre. Their theory, however,
predicted several split peaks ofSxx(q, ω) the existence of which has not been experimentally
verified. Matsubara and Inawashiro (MI) [8, 9] have included a weak next-nearest-neighbour
(NNN) ferromagnetic (FM) interactionHF in the HamiltonianH in (1):

HF = −2J ′ ∑
i

[Sz
i S

z
i+2 + ε(Sx

i Sx
i+2 + S

y

i S
y

i+2)] |J ′| � J ε � 1. (3)

Figure 1. Néel states and DWP states forSz
T = ±1. The

broken lines indicate the position of domain walls.
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They have shown the existence of bound states of DWPs besides the free DWP states.
They have further shown that atT = 0, whenJ ′ is FM (J ′ > 0), the transverse correlation
function Sxx(q, ω) exhibits a sharp peak at lower energy while the peak occurs at a higher
energy forJ ′ < 0. The results forJ ′ > 0 are in good agreement with experimental data.

In this paper, we consider the fully anisotropic Ising-like AFMS = 1
2 Hamiltonian in

one dimension and show that using this Hamiltonian some of the results obtained by MI such
as the asymmetry of the lineshape ofSxx(q, ω) and bound states of DWPs can be derived.
In section 2, the theory and the results for the eigenvalues of the DWP continuum and
DWP bound states are derived. In section 3, the transverse correlation functionSxx(q, ω)

is calculated and also the dominant spin-wave dispersion obtained from the peak positions
of the correlation functions. Section 4 contains a discussion of the results obtained.

2. Domain-wall pair states

The fully anisotropic Ising-like Heisenberg Hamiltonian in one dimension is given by

Hxyz = 2
N∑

i=1

(JxS
x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1)

= 2J

N∑
i=1

[
Sz

i S
z
i+1 + ε1

2
(S−

i S+
i+1 + S+

i S−
i+1) + ε2

2
(S+

i S+
i+1 + S−

i S−
i+1)

]
(4)

J = Jz ε1 = (Jx + Jy)/2J ε2 = (Jx − Jy)/2J ε1, ε2 � 1.

Hamiltonian (1) is a special case of (4) whenJx = Jy . Since the anisotropy constantsε1

and ε2 are much less than 1, the Ising partHzz of Hxyz can be treated as the unperturbed
Hamiltonian and the rest of the Hamiltonian,Hxy , treated as perturbation, i.e.

Hxyz = Hzz + Hxy. (5)

For this Hamiltonian a periodic boundary condition is assumed, i.e.N + 1 ≡ 1, whereN

is the total number of spins. The ground state ofHzz is doubly degenerate and so are the
Néel states|N1〉 and |N2〉 shown in figure 1. From these two states, one can construct two
translationally symmetric ground states

φ+ = 1√
2
(|N1〉 + |N2〉) φ− = 1√

2
(|N1〉 − |N2〉) (6)

with momentum wavevectorsq = 0 andπ respectively. Lowest-lying excited states can be
obtained from the Ńeel state by flipping a block ofν adjacent spins (figure 1), giving rise
to DWP states. The broken lines indicate the positions of the domain walls. We choose a
set of basis states for oddν describing propagating DWPs with wavevectorq:

|ν, q〉± = 1√
2N

∑
j

exp(iqrj )

(
S+
j

(ν−1)/2∏
l=1

S−
j+2l−1S

+
j+2l + S−

j

(ν−1)/2∏
l=1

S+
j+2l−1S

−
j+2l

)
φ±. (7)

A set of basis states can similarly be defined for evenν, which gives rise to the same
excitation spectrum as in the case of oddν. Within the space of basis states defined by (7),
the ground-state energy in second-order perturbation theory is

Eg = −NJ

2
(1 + ε2

1). (8)

The ground-state degeneracy is not lifted in this order. The matrix elements ofHxyz in the
set of basis states are given by

+〈ν, q|Hxyz|ν, q〉+ =
{

2J (1 + ε2
1) + 2Jε2 cosq = A0 for ν = 1, N − 1

2J (1 + 3
2ε2

1) = A otherwise.
(9)
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The diagonal elements have been calculated with respect to the ground-state energyEg in
(8). The off-diagonal elements are given by

+〈ν, q|Hxyz|ν ′, q〉+ =
{

V

V ∗ for

{
ν ′ = ν − 2

ν ′ = ν + 2

V = 2Jε1[1 + exp(2iqa)].

(10)

a is the lattice constant which is taken hereafter as 1. Identical results are obtained for the
states|ν, q〉−. The off-diagonal terms have been calculated up to first order in the anisotropy
constants following MI [8, 9] so that a comparison with their results is possible. The first
excited eigenstates can be constructed as an appropriate linear combination of the DWP
states:

|9(q)〉± =
N/2∑
ν=1

b2ν−1 exp[i(2ν − 1)α]|2ν − 1〉±. (11)

With the choice exp(2iα) = (V/V ∗)1/2, the following equations for the coefficientsbν are
obtained:

λb1 = A0b1 + V̄ b3 for ν = 1
λbν = Abν + V̄ (bν−2 + bν+2) for ν 6= 1, N − 1 (12)

λbN−1 = A0bN−1 + V̄ bN−3 for ν = N − 1

whereλ is the eigenvalue and̄V = 2ε1J | cosq|. MI [8, 9] have derived an identical set of
equations withA0 andA given by

A0 = 2J (1 + ε2) + 2J ′(1 − ε cos(2q))

A = 2J (1 + 3
2ε2) + 4J ′ (13)

where J ′ is the NNN FM interaction (equation (3)). Following the MI derivation, the
solutions are of two categories

(i) Free DWP states.These states give rise to the continuum of excited states with a
lower and upper boundary and eigenvalue

λ = A + 2V̄ cos(2p) (14)

with

bν = 1√
N

{exp[ip(ν + 1)] − exp(iϕµ) exp[−ip(ν + 1)]} (15)

Herep = (πµ + ϕµ)/(N + 1), µ = 1, 2, 3, . . . , N/2 andϕµ is approximately given by

ϕµ = 2 tan−1

[
Ā sin(2πµ/(N + 2))

V̄ + Ā cos(2πµ/(N + 2))

]
(16)

whereĀ = A − A0 = −2Jε2 cosq.
When V̄ > |Ā|, all the solutions belong to this category. WhenV̄ < |Ā|, N/2 − 2

solutions are of this category and the remaining two solutions belong to the other category.
The continuum eigenvalueλ given in (14) is the same as obtained by IS [2], since the
energy does not have a first-order contribution inε2. However, thebν-values are different
since exp(iϕµ) deviates significantly from 1. It is the change in|bµ| which is responsible
for the asymmetry inSxx(q, ω).

(ii) DWP bound states.In this case,|bµ| decreases asν increases from 1 toN/2. Again,
following MI, the eigenvalue

λ = A0 − V̄ 2

Ā
(17)
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and

bν =
[
Ā2 − V̄ 2

Ā2

]1/2 [
− V̄

Ā

](ν−1)/2

. (18)

Another solution with the same eigenvalue is obtained by replacingbν by bN−ν .

We now take into account the fact that there are two ground statesφ+ and φ− with
momenta 0 andπ , respectively. Both the ground states lead to the same solutions. However,
the momentum wavevectorq of the DWPs should be measured with respect to that of the
ground state. Forφ+, equations (14) and (17) forλ remain unchanged. When the ground
state isφ−, q is to be redefined asq − π . Equations (14) and (17) are still valid butq is
replaced byq − π in A0 andĀ.

Figure 2 shows a plot of the spin-wave excitation continuum (broken curves) and the
bound-state energy (solid curves) forε1 = 0.05 andε2 = 0.1. In the DWP bound states,
the walls do not separate beyond a distance

d = 1

p
= 2

ln[|Ā|/V̄ ]
. (19)

One finds the existence of two bound-state branchesa andb the energies of which lie both
below and above the continuum. For thea branch, the energy lies below the continuum
for q < π/2 and above the continuum forq > π/2. The reverse is true for theb branch.
In the case of the MI Hamiltonian, there is just one bound-state branch lying below the
continuumJ ′ > 0 and above forJ ′ < 0.

Figure 2. Spin-wave excitation continuum and DWP bound-state energy in units ofJ for
ε1 = 0.05 andε2 = 0.1.
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3. Transverse correlation functionSxx(q, ω) at T = 0 K

The transverse correlation functionSxx(q, ω) at T = 0 K can be written as

Sxx(q, ω) = 1

d

∑
λ

d∑
i

|〈9λ|Sx(q)|Gi〉|2δ(ω − Eq + Eg) (20)

where the ground state|Gi〉 is d-fold degenerate with eigenvalueEg and the9λ are the
excited eigenstates with eigenvaluesEλ. In this case the ground state is doubly degenerate
even in second-order perturbation theory andd = 2. Equation (20) can further be written
as

Sxx(q, ω) = 1
2

∑
λ

{|〈9λ|Sx(q)|G+〉|2 + |〈9λ|Sx(q)|G−〉|2}δ(ω − Eλ + Eg)

= 1
2[Sxx

+ (q, ω) + Sxx
− (q, ω)] (21)

where|G+〉 and |G−〉 are the two ground states. Also

Sx(q) = 1

2
√

N

∑
λ

exp(iqrj )(S
+
j + S−

j ). (22)

Consider the unperturbed ground stateφ+. The ground state|G+〉 to first order inε1 and
ε2 is given by

|G+〉 = φ+ +
′∑
λ

〈K|Hxy |φ+〉|K〉
E0 − Ek

(23)

whereE0 is the unperturbed ground-state energy equal to−JN/2. Ek is the energy of the
unperturbed eigenstate|K〉 and the prime indicates|K〉 6= φ+:

|G+〉 = φ+ + Jε1

∑
i

(S+
i S−

i+1 + S−
i S+

i+1)|φ+〉
/

− 2J.

There is no first-order contribution inε2 asS+
i S+

i+1 + S−
i Si

i+1 acting onφ+ gives zero:

Sx(q)|G+〉 = 1
2

[
(1 − ε1 cosq)|1q〉+ − V

2J
|3q〉+

]
. (24)

|ν, q〉+ is given by (7). Using (21) and (24) and the expression for9λ from (11), we get

Sxx
+ (q, ω) = − 1

4π
Im

{
(1 − ε1 cosq)2G11 + |V |2

4J 2
G33 − [1 − ε1 cosq]V

2J
G13

− [1 − ε1 cosq]V ∗

2J
G31

}
. (25)

Im denotes the imaginary part,

G(i,j) =
〈
i

∣∣∣∣ 1

ω − Hxyz(q) + iδ

∣∣∣∣ j〉
(δ → 0+) (26)

is the Green function defined with (9) and (10).G(i,j) can be evaluated by techniques
similar to those used for the evaluation of Green functions in the NN tight-binding model
with free ends [2]. We list the Green functions as follows:

G11 = 2�0 − � − i
√

4|V |2 − �2

2[|V |2 − �0� + �2
0]

G13 = G0

V
G31 = G0

V ∗ G33 = G0�0

|V |2
(27)
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where

G0 = �0� − 2|V |2 − i�0

√
4|V |2 − �2

2[|V |2 − �0� + �2
0]

�0 = ω − A0 � = ω − A.

Sxx
− (q, ω) has an expression similar to (25) but withq replaced byq − π . Using the

expressions for the Green functions in (27), one finally obtains

Sxx(q, ω) = 1

2

{ √
4|V |2 − �2

8π(|V |2 − �0� + �2
0)

[
(1 − ε1 cosq)2 − �0

J
(1 − ε1 cosq) + �2

0

4J 2

]
+

√
4|V |2 − �′2

8π(|V |2 − �′
0�

′ + �′2
0 )

[
(1 + ε1 cosq)2 − �′

0

J
(1 + ε1 cosq) + �′2

0

4J 2

] }
(28)

where

�′
0 = �0(q → q − π) �′ = �(q → q − π). (29)

The wavevectorq is measured with respect to that of the ground state. In deriving the
expression forSxx(q, ω), only the contribution for the continuum of excited states has been
calculated. The bound states also contribute to the correlation function and appear as sharp
peaks at the bound-state energies. In figures 3 and 4,Sxx(q, ω) is plotted forq = π (zone
centre) andq = 4π/5 with ε1 = 0.095 andε2 = 0.065. For these parameter values,V̄ is
not less than|Ā| and so there are no DWP bound states. The plots are clearly asymmetric
towards the lower energies. In figure 5, the dispersion of the peak positions ofSxx(q, ω)

for various values ofq are shown and compared with the experimental results (open circles)
of Satijaet al [10].

Figure 3. Sxx(q, ω) at T = 0 for ε1 = 0.095, ε2 = 0.065 andq = π .
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Figure 4. Sxx(q, ω) at T = 0 for ε1 = 0.095, ε2 = 0.065 andq = 4π/5.

4. Discussion of results

We have shown using the fully anisotropic Ising-like Heisenberg Hamiltonian that some
of the results of the MI theory, in which a NNN FM interaction is assumed besides the
usual NN AFM interaction, can be qualitatively reproduced. These include the formation
of the DWP bound states and an asymmetry in the lineshape of the transverse correlation
functionSxx(q, ω) at the zone centre. There are, however, a number of differences. The MI
theory gives rise to a single bound-state branch whereas in the present case two branches are
obtained. No experimental results are as yet available on the effect of bound states on the
thermodynamic and dynamic properties of the experimental systems CsCoCl3 and CsCoBr3.
So one cannot comment on which bound-state description is closer to experimental results.
The bound-state formation is more restricted and has less dispersion in the case ofHxyz

than in the case of the MI Hamiltonian. The transverse correlation functionSxx(q, ω) in the
present case has a two-peak structure. Near the zone centre, the intensity of the peak towards
the low-energy side is greater and an asymmetry in the lineshape is clearly evident. The MI
lineshape has a single peak with asymmetry towards the lower energy. The double-peaked
structure in the correlation functions of AFM chains has been reported earlier [19]. The
experimental data presented in [11, 20] indicate the existence of weak resonances at higher
frequencies. There is, however, no definite experimental results on the existence of a second
peak of magnetic origin in the transverse correlation function of CsCoCl3 and CsCoBr3.
The dispersion relation of the peak frequencies ofSxx(q, ω) (figure 5) of Hxyz does not
show very good agreement with the experimental data. This may be due to the limitations
of a first-order perturbation theory in the calculation ofSxx(q, ω). Bose and Chatterjee [6]
using second-order perturbation theory in the calculation ofSxx(q, ω) showed that a marked
improvement in the fitting of the peak frequencies to experimental data occurs. Inclusion



Domain-wall excitations in Ising-like antiferromagnet 359

Figure 5. Dispersion of peak frequencies ofSxx(q, ω): ◦, experimental data of Satijaet al
[10].

of further terms in the Hamiltonian such as the staggered field term of Nagleret al [4] may
also improve the fitting to experimental results. The present perturbative scheme is not of
general applicability because of the use of a restricted set of basis states as in (7). Adoption
of cluster algorithms [21] may lead to a more general approach.

The restriction to the subspace of states of type (7) has the effect that the continuum
energy eigenvalueλ given by (14) is independent ofε2 to the first order inε2. The expression
for λ is thus identical with that obtained in the caseε2 = 0 when the energy is calculated
to first order inε1. For this case, the exact Betheansatz result [22] is known which, for
ε1 → 0 and to first order inε1, is identical with (14) [23, 24]. Exact results corresponding
to the DWP bound-state energy given in (17) are not known.

Apart from relevance to experimental systems such as CsCoCl3 and CsCoBr3, the present
study is intended to provide insights about the spin dynamics of fully anisotropic Ising-like
AFM systems. The ground-state energy and low-lying excitation spectrum of the fully
anisotropic Heisenberg Hamiltonian are known exactly because of the mapping between
the fully anisotropic Hamiltonian and the exactly solvable eight-vertex model [22, 25]. The
dynamical correlation functions are, however, not known exactly because of a lack of
knowledge of the exact wavefunctions. In [19] the correlation functions for the various
special cases of the general anisotropic Hamiltonian are discussed. The Ising-like limit in
which we are interested is, however, only briefly discussed. Our calculations provide us
with some physical insights about spin dynamics in Ising-like fully anisotropic AFM systems
which are not obvious from the mapping onto the eight-vertex model. An important feature
is the double degeneracy of the ground state with two different momentum wavevectors.
This is responsible for the two branches of bound states and also two peaks in the transverse
correlation functions.

The non-triviality of the double degeneracy of the ground state can be rigorously
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demonstrated in the special case ofHxyz in (4) with ε1 = 0. Boseet al [26] have shown
that the Ńeel states|N1〉 and|N2〉 are the exact ground states in this case. The Hamiltonian
is unitarily related to the FM Heisenberg Hamiltonian and so has the same spectrum. When
the ground state isφ±, the exact excitation spectrum is given by

e± = 1 ∓ ε2 cosq (30)

where q is measured with respect to the ground-state wavevector. Thus there are two
branches in the excitation spectrum. The lowest excitation spectrum is given by

e =
{

1 − ε2 cosq

1 + ε2 cosq
for


0 6 q 6 π

2
π

2
6 q 6 π.

(31)

The exact excited states with eigenvaluese± are simply propagating DWP states with unit
length (ν = 1 in (7)). In this case there is no continuum of excited states. The continuum
is obtained only whenε1 6= 0. On the other hand, whenε2 < ε1 or ε2 = 0 andJ ′ in the
MI Hamiltonian is zero, bound states of DWPs do not occur. The evidence of DWP bound
states from experimentally measurable quantities is, however, yet to be obtained for a real
system.
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